Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Small ; 19(12): e2206153, 2023 03.
Article in English | MEDLINE | ID: covidwho-2173458

ABSTRACT

Natural membrane vesicles, including extracellular vesicles and enveloped viruses, participate in various events in vivo. To study and manipulate these events, biomembrane-coated nanoparticles inspired by natural membrane vesicles are developed. Herein, an efficient method is presented to prepare organic-inorganic hybrid materials in high yields that can accommodate various lipid compositions and particle sizes. To demonstrate this method, silica nanoparticles are passed through concentrated lipid layers prepared using density gradient centrifugation, followed by purification, to obtain lipid membrane-coated nanoparticles. Various lipids, including neutral, anionic, and cationic lipids, are used to prepare concentrated lipid layers. Single-particle analysis by imaging flow cytometry determines that silica nanoparticles are uniformly coated with a single lipid bilayer. Moreover, cellular uptake of silica nanoparticles is enhanced when covered with a lipid membrane containing cationic lipids. Finally, cell-free protein expression is applied to embed a membrane protein, namely the Spike protein of severe acute respiratory syndrome coronavirus 2, into the coating of the nanoparticles, with the correct orientation. Therefore, this method can be used to develop organic-inorganic hybrid nanomaterials with an inorganic core and a virus-like coating, serving as carriers for targeted delivery of cargos such as proteins, DNA, and drugs.


Subject(s)
COVID-19 , Nanoparticles , Humans , Lipid Bilayers , Silicon Dioxide , Particle Size
2.
Vaccine ; 38(49): 7697-7701, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-920526

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, has been spreading throughout the world. To date, there are still no approved human vaccines for this disease. To develop an effective vaccine, the establishment of animal models for evaluating post-vaccination immune responses is necessary. In this study, we have identified a CTL epitope in the SARS-CoV-2 spike (S) protein that could be used to measure the cellular immune response against this protein. Potential predicted CTL epitopes of the SARS-CoV-2 S protein were investigated by immunizing BALB/c mice with a recombinant of the receptor-binding domain (RBD) of the S protein. Then, CD8+ T cells specific for S-RBD were detected by stimulating with potential epitope peptides and then measuring the interferon-gamma production. Truncation of this peptide revealed that S-RBD-specific CD8+ T cells recognized a H2-Dd-restricted S526-533 peptide. In conclusion, this animal model is suitable for evaluating the immunogenicity of SARS-CoV-2 vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Epitopes, T-Lymphocyte/metabolism , Female , Mice, Inbred BALB C , Peptides/immunology , Peptides/pharmacology , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL